2026.02.01 (일)

  • 맑음동두천 -5.2℃
  • 맑음강릉 0.6℃
  • 맑음서울 -3.3℃
  • 맑음대전 -1.3℃
  • 맑음대구 0.1℃
  • 맑음울산 0.9℃
  • 구름조금광주 0.6℃
  • 맑음부산 3.2℃
  • 구름조금고창 0.1℃
  • 구름많음제주 6.5℃
  • 맑음강화 -2.5℃
  • 맑음보은 -2.5℃
  • 맑음금산 -1.5℃
  • 구름많음강진군 1.3℃
  • 구름조금경주시 0.5℃
  • 맑음거제 3.1℃
기상청 제공

서울대병원, 인공지능 기반 수술 위험 예측 모델 개발...전문의 예측 성적보다 특이도·민감도 높아

수술 전 마취 위험 예측하는 거대언어모델 개발...71만여명 수술 데이터 학습

  수술 전 위험을 보다 빠르고 정확하게 예측할 길이 열렸다. 서울대병원 연구팀이 마취 전 평가 요약문을 바탕으로 환자의 수술 위험을 평가하는 거대언어모델(LLM)을 자체적으로 개발했다. 이를 활용하면 신속하고 객관적인 수술 위험 평가를 통해 의료서비스의 질을 향상할 수 있을 것으로 기대된다.

  서울대병원 마취통증의학과 이형철·윤수빈 교수 및 국가전략기술 특화연구소 이현훈 교수 공동연구팀이 71만여명의 수술 데이터를 바탕으로 수술 전 마취 위험을 예측하는 인공지능 모델을 개발하고, 그 성능을 검증한 결과를 28일 발표했다.

  수술 전 마취 위험을 평가하는 과정은 환자의 안전을 위해 매우 중요하다. 국내 의료 현장에서는 환자의 전반적인 건강상태를 1등급(건강한 환자)부터 6등급(뇌사 상태)으로 구분하는 ‘미국마취과학회 신체상태 분류(ASA-PS)*’를 도입해 마취 위험과 전반적인 수술 위험의 예측 도구로 널리 활용하고 있다.

[표] 미국마취과학회 신체상태 분류(ASA Physical Status Classification)

등급

정의

기준

ASA

건강한 환자

신체적으로 건강, 비만 없음, 흡연 및 음주 없음

ASA

경미한 전신질환 환자

경미한 고혈압, 경증 천식, 흡연자, 임신 초기, 경도 비만,

잘 조절되는 당뇨병 등

ASA

중등도에서 중증의 전신질환 환자

잘 조절되지 않는 고혈압 및 당뇨병, 심부전, 폐쇄성 폐질환 등

ASA

지속적으로 생명을 위협하는

중증 전신질환 환자

최근 발생한 심근경색, 진행성 심부전,

지속적인 혈역학적 불안정성 등

ASA

수술 없이 생존 불가능한 말기 환자

대동맥류 파열, 중증 외상, 두부손상, 다발성 장기부전 등

ASA

뇌사 상태

-


 그러나 ASA-PS 체계는 중증도 기준이 주관적이어서 의료진 간 ASA-PS 등급 분류가 불일치하는 문제가 종종 발생했다. 의료 서비스를 효율적으로 제공하려면 중증도 마취 위험을 일관적·객관적으로 파악할 수 있는 수술 전 평가 도구가 필요했다.

  연구팀은 이런 문제를 해결하기 위해 2004-2023년 서울대병원에서 수술 받은 대규모 환자 데이터를 학습시켜 ASA-PS 등급을 자동 분류하는 거대언어모델을 개발했다. 이 모델은 사람의 언어를 이해하는 챗GPT처럼 자연어처리 기술을 기반으로 하는 인공지능으로, 특히 의료 기록과 개인정보 보안에 특화되어 있다.

  이 거대언어모델을 활용하면 환자의 건강상태·기저질환 등을 간략하게 서술한 ‘마취 전 평가 요약문’을 바탕으로 ASA-PS 등급을 신속하고 객관적으로 분류할 수 있다. 따라서 임상 현장에서 의사소통의 효율성과 환자 안전을 증진하는 데 도움이 될 수 있다는 것이 연구팀의 설명이다.

  환자 460명의 데이터를 바탕으로 분류 성능을 평가한 결과, 모든 ASA-PS 등급에 대한 이 모델의 평균 예측 정확도(AUROC)는 0.915로 매우 높았다. 이 수치가 1에 가까울수록 완벽한 예측을 했음을 의미한다.

  또한, 거대언어모델 및 마취과 전문의 분류 성적은 각각 특이도(0.901 vs 0.897), 정밀도(0.732 vs 0.715), F1-점수(0.716 vs 0.713)로, 모두 거대언어모델이 조금씩 우수한 성능을 보였다.
*F1-점수: 정밀도(모델이 양성으로 예측한 것 중 실제 양성 비율) 및 재현율(실제 양성인 것 중 모델이 양성으로 예측한 비율)의 조화평균

  추가적으로 임상적 의사결정에 중요한 ASA-PS 1~2등급(건강한 사람 및 경미한 전신질환)과 3등급 이상(중증도 전신질환 이상)의 환자를 구분하는 데 있어 거대언어모델의 오류율은 11.74%로, 이는 마취과 전문의의 오류율 13.48%보다 우수한 성적이었다.

  이형철·윤수빈 교수(마취통증의학과)는 “이 연구 결과는 인공지능 기술이 임상 현장에서 실질적으로 활용될 수 있음을 보여주는 성과”라며 “후속 연구를 통해 환자의 안전 및 의료 질 향상에 기여할 수 있는 기술을 지속적으로 개발할 수 있도록 노력할 예정이다”라고 말했다.

  이현훈 교수(국가전략기술 특화연구소)는 “인공지능 수술 전 평가 모델이 세계적으로 활용될 수 있도록 특화연구소의 데이터를 바탕으로 세계적으로 협력하면서 글로벌 기술사업화를 추진해나갈 계획”이라고 말했다.

  한편, 이번 연구는 디지털 헬스케어 분야의 네이처 파트너 저널 ‘디지털 메디신(npj Digital Medicine, IF;12.4)’ 최근호에 게재됐다.

배너
배너

배너

행정

더보기
식약처, 디케이메디비젼 소프트콘택트렌즈 16개 모델 판매중단·회수…‘변경인증 미이행’ 적발 식품의약품안전처는 의료기기 제조업체 디케이메디비젼㈜이 제조한 매일착용소프트콘택트렌즈 가운데 일부 제품을 외부 제조원에 위탁 생산하면서도 사전 변경 인증을 받지 않은 사실이 확인돼, ‘DAVICH LENS 3DAY COLOR’ 등 16개 모델에 대해 판매 중단 및 회수 조치를 실시했다고 밝혔다. 식약처에 따르면, 이번 조치는 디케이메디비젼㈜에 대한 점검 과정에서 기존 의료기기 인증을 받은 매일착용소프트콘택트렌즈(제허11-1168호, 제허19-602호)를 생산하면서 일부 제품을 외부 제조원에 위탁해 제조·판매한 사실이 확인된 데 따른 것이다. 이는 제조원 변경에 해당함에도 불구하고 의료기기법에 따른 변경 인증을 받지 않은 위법 행위로 판단됐다. -회수대상 제품 정보 의료기기법 제12조 및 제13조는 의료기기 제조업자가 제조원, 제조 방법 등 인증받은 사항에 변경이 있을 경우 반드시 변경 인증을 받도록 규정하고 있으며, 허가·인증된 시설과 제조 및 품질관리체계를 유지해야 한다고 명시하고 있다. 식약처는 “해당 제품들이 이미 인증받은 매일착용소프트콘택트렌즈이고, 위탁 제조원 역시 소프트콘택트렌즈 제조업체이며, 출고 전 자가품질검사를 통해 적합 판정을 받은 제품만 출

배너
배너

제약ㆍ약사

더보기

배너
배너
배너

의료·병원

더보기
“졸속 의대 증원 중단하라”…의료계, 14만 회원 결집 ‘총력 대응’ 선언 대한민국 의료가 벼랑 끝에 서 있다며 의료계가 정부의 의대 정원 확대 정책 중단을 강력히 촉구했다. 전국 의사 대표자들은 비과학적·비합리적인 의대 증원이 의학교육 붕괴와 건강보험 재정 파탄으로 이어질 것이라 경고하며, 정부가 전문가 의견을 외면할 경우 14만 회원이 단일대오로 총력 대응에 나설 것이라고 선언했다. 대한의사협회는 지난 31일 오후 5시, 서울 용산구 의협회관 지하 1층 대강당에서 ‘합리적 의대정원 정책을 촉구하는 전국의사대표자대회’를 열고 이 같은 입장을 밝혔다. 이날 대회에는 전국 각지의 의사회 및 의료계 대표자들이 참석해 정부의 의대 증원 추진을 규탄했다. 의료계는 결의문을 통해 “강의실도, 교수도 없는 현장에서 수천 명의 학생을 한데 몰아넣는 것은 정상적인 교육이 아니다”라며 “2027년 휴학생과 복귀생이 겹치는 ‘더블링 사태’는 의학교육의 사망 선고이자, 국민 생명을 위협하는 실력 없는 의사 양산으로 이어질 것”이라고 주장했다. 이어 “현장이 수용할 수 없는 그 어떤 증원 숫자도 결코 용납하지 않겠다”며 졸속 증원 즉각 중단을 요구했다. 또한 의료계는 의대 증원이 초래할 건강보험 재정 악화를 강하게 문제 삼았다. 이들은 “준비되지 않은