2025.05.07 (수)

  • 맑음동두천 26.0℃
  • 구름많음강릉 28.0℃
  • 구름많음서울 24.5℃
  • 맑음대전 25.8℃
  • 맑음대구 26.1℃
  • 맑음울산 22.5℃
  • 맑음광주 25.0℃
  • 구름조금부산 21.0℃
  • 맑음고창 25.3℃
  • 구름조금제주 18.9℃
  • 구름조금강화 22.5℃
  • 맑음보은 25.4℃
  • 맑음금산 26.8℃
  • 맑음강진군 22.8℃
  • 맑음경주시 28.3℃
  • 맑음거제 21.0℃
기상청 제공

엑소시스템즈, 국내최초 ‘AI 기반 근감소증 진단보조’ 혁신의료기기 지정

엑소시스템즈(대표 이후만)는 자사의 AI 디지털바이오마커 기반 근감소증 진단 SW ‘EXOMed-DeepSarc’ 가 식품의약품안전처 혁신의료기기로 지정이 됐다고 26 밝혔다.

 

이번에 지정된 엑소시스템즈의 근감소증 진단 AI SW는 신경근육계 생체신호를 분석하는 AI 디지털바이오마커 기술을 통해 기존의 복잡하던 근감소증 진단 프로세스를 약 3분 안에 수행할 수 있도록 보조할 수 있는 솔루션이다.

 

기존 아시아 근감소증 평가위원회(AWGS) 진료지침에서 제시하는 근감소증 진단 기준에 따른 진단 행위를 위해서는 근감소증을 진단하기 위해서는 근육량 평가근력 평가운동기능 평가 등 복잡한 임상적 기능평가의 조합으로 이루어져 많은 시간과 비용이 요구된다이러한 검사 방식은 비용적 한계를 넘어 적용의 한계도 있는데특히 중추신경계 질환이나 신경근육계 질환을 겪은 환자들은 근감소증이 발생하였음에도 신체의 거동이 불편해 진단을 위한 행위 자체가 불가능한 경우들이 있었다엑소시스템즈의 기술은 이러한 한계를 극복하고 소요시간과 접근성을 크게 개선할 수 있는 혁신성을 인정받았다.

배너
배너

배너

행정

더보기
식약처, 디지털의료기기 관련 가이드라인 6종 제·개정 식품의약품안전처(처장 오유경) 소속 식품의약품안전평가원(원장 강석연)은 「디지털의료제품법」 하위규정 시행에 따라 디지털의료기기 관련 가이드라인 1종을 제정하고 5종을 5월 7일 개정했다고 밝혔다. 주요내용은 디지털의료기기소프트웨어 특성을 반영한 허가신청서, 첨부서류 등 작성 방법을 안내하고, 인공지능·가상융합기술 등이 적용된 디지털의료기기에 대해 ▲제품 분류 판단기준과 흐름도 정비 ▲기술별 제품 사례 안내 ▲허가 제출자료의 범위 정비 및 작성방법 예시 등이다. 붙임 가이드라인 제·개정 주요 내용 구분 제목 목적 주요사항 제정 디지털의료기기소프트웨어 허가 심사 가이드리인 독립형디지털의료기기소프트웨어의 허가·심사 시 기술문서·첨부자료 작성방법 등 제시 ① 독립형 디지털의료기기소프트웨어 관련 형태적·기능적 특성에 따른 안내 ② 독립형 소프트웨어 신청서 작성방법 및 예시, 성능평가 지표(AUC,민·특이도) 등 제시 ③ 「디지털의료제품 허가·인증·신고 심사 및 평가 등에 관한 규정」에 따른 첨부서류 안내 개정 의료기기 소프트웨어 허가 심사 가이드리인 내장형 소프트웨어의 허가·심사 시 기술문서·첨부자료 작성방법 등 제시 기존 내장형·독립형 소프트웨어 관련 포괄적 내용

배너
배너

제약ㆍ약사

더보기

배너
배너
배너

의료·병원

더보기
여럿이 자는 환경에서도, ‘내 숨소리’로 ..."수면 상태 분석한다" 분당서울대병원 정신건강의학과 윤인영 · 이비인후과 김정훈 교수 연구팀이 에이슬립 홍준기 CTO 연구팀과 공동으로 ‘여럿이 함께 수면하는 환경에서도 각 개인의 숨소리를 분리해 개인별 수면 단계를 정확히 구분’하는 인공지능(AI) 모델의 성능을 검증한 연구 결과를 발표했다. 수면다원검사는 수면의 질과 구조를 정밀하게 평가하는 표준검사다. 하지만 여러 센서를 부착해야하는 불편함, 높은 비용으로 인해 일상적으로 반복 측정하기에는 한계가 있었다. 이를 보완하기 위해 웨어러블 기기와 수면 측정 애플리케이션이 주목 받고 있지만 그 정확도는 아직 수면다원검사의 수준에는 미치지 못하는 실정이었다. 또한, 기존의 수면 분석 기술들은 대부분 혼자 수면하는 환경을 기준으로 설계돼있어 실제처럼 두 명 이상 수면하는 경우에는 숨소리, 뒤척임, 코골이 등 타인의 소음으로 인해 개인별 수면 상태를 정확하게 분석하기는 어려웠다. 이에, 연구팀은 숨소리만으로 수면 단계(▲깨어있음 ▲렘(REM) 수면 ▲얕은 수면 ▲깊은 수면)를 예측하는 AI 모델을 개발, 공동 수면 상황에서도 개인마다의 수면 단계를 정확하게 분류할 수 있는지 알아보고자 연구를 진행했다. 연구팀은 성인 44쌍(총 88명)이